Outline

- Remark: most plots here are only for D=0.5
 - Plots are similar for D=0.7 and 1.0 (see GP web page)

Bisector Method

- Raw quantity distributions (Data and MC) → pages 2 to 4
- Applied at hadron level → page 5

Dijet Balance

- Raw quantity distributions (Data and MC) → pages 6 to 10
- Probe Jet / $|η_{DET}|$ < 0.25 (> 0.55) → page 11
- − Probe Jet / $|η_{DET}| \notin [0.25,0.55]$ (reference region) → page 12

Rapidity distributions

- Discrepancy between data and MC can be explained by above dijet balance results
- − Possible effect: compare unfolded cross sections with the nominal $0.1 < |Y^{CAL}| < 0.7$ cut and a $0.25 < |\eta_{DET}^{(CAL)}| < 0.55$ cut → page 13

Absolute P_⊤ jet correction

- CAL / HAD matching distributions → pages 14 to 16
- P_T and ΔP_T distributions → pages 17 to 19

Pile-Up correction

Investigate cross sections in 5 ≠ run ranges → pages 20 and 21

Systematic uncertainties

- New JES uncertainty: now use curve (function of jet P_T) provided by the JER Group
 → between 2 and 3% instead of the flat 3% used previously: see page 22
- Justify that the MC reproduce the Missing E_T scale at least at a ±10% level → page 23

Bisector Method: angle γ

Bisector Method: $\Delta P_{T}^{//}$

Bisector Method: ΔP_T^{PERP}

Bisector Method at Hadron Level

Dijet Balance: P_TPROB

Dijet Balance: P_TTRIG

Dijet Balance: P_TPROB - P_TTRIG

Dijet Balance: β distribution

Dijet Balance: △P_T^F

Dijet Balance: Probe Jet / $|\eta_{DET}| \notin [0.25,0.55]$

- $|\eta_{DET}| < 0.25 \ (> 0.55)$
- → Discrepancies between Data and MC are within the JES uncertainty
 - Discrepancies in opposite directions for $|\eta_{DET}|$ < 0.25 and $|\eta_{DET}|$ > 0.55
 - Explain discrepancy between data and MC concerning the rapidity distributions
- Probe jet / 0.1 < |Y| < 0.7 && $|\eta_{DET}|$ ∉ [0.25,0.55]
- → Dijet Balance is globally OK
 - Discrepancies between Data and MC for $|\eta_{DET}|$ < 0.25 on one hand and $|\eta_{DET}|$ > 0.55 on the other hand compensate here
 - What happens for the cross section: see next slide...

CAL / HAD matching: Δφ

CAL / HAD matching: ΔY

CAL / HAD matching: △R

Absolute P_T jet correction: P_T^{HAD}

Absolute P_T jet correction: P_TRAW

Absolute P_T jet correction: P_T^{HAD} - P_T^{RAW}

5 ≠ run ranges

Inst. Luminosity [10³⁰cm⁻²s⁻¹]

σ vs run ranges

Missing E_T scale uncertainty

